مغر انسان، به اذعان بسیاری از دانشمندان، پیچیده ترین سیستمی است که تا کنون در کل گیتی مشاهده شده و مورد مطالعه قرار گرفته است. اما این سیستم پیچیده نه ابعادی در حد کهشکشان دارد و نه تعداد اجزای سازندهاش، بیشتر از پردازندههای ابررایانههای امروزی است. پیچیدگی راز آلود این سیستم بی نظیر، به اتصالهای فراوان موجود میان اجزای آن بازمیگردد. این همان چیزی است که مغز ۱۴۰۰ گرمی انسان را از همه سیستمهای دیگر متمایز می کند.
فرایندهای خودآگاه و ناخودآگاهی که در حدود جغرافیایی بدن انسان رخ میدهند، همگی تحت مدیریت مغز هستند. برخی از این فرایندها آنقدر پیچیده هستند، که هیچ رایانه یا ابررایانهای در جهان امکان پردازش و انجام آن را ندارد. با این حال، تحقیقات نشان میدهند که واحدهای سازنده مغز انسان، از نظر سرعت عملکرد، حدود یک میلیون بار کندتر از ترانزیستورهای مورد استفاده در تراشه های سیلیکونی CPU رایانه هستند.
سرعت و قدرت پردازش بسیار بالای مغز انسان، به ارتباطهای بسیار انبوهی باز میگردد که در میان سلولهای سازنده مغز وجود دارد و اساساً، بدون وجود این لینکهای ارتباطی، مغز انسان هم به یک سیستم معمولی کاهش مییافت و قطعاً امکانات فعلی را نداشت.
گذشته از همه این ها، عملکرد عالی مغز در حل انواع مسائل و کارایی بالای آن، باعث شده است تا شبیه سازی مغز و قابلیت های آن به مهمترین آرمان معماران سختافزار و نرمافزار تبدیل شود. در واقع اگر روزی فرا برسد (که البته ظاهرا خیلی هم دور نیست) که بتوانیم رایانهای در حد و اندازههای مغز انسان بسازیم، قطعاً یک انقلاب بزرگ در علم، صنعت و االبته زندگی انسانها، رخ خواهد داد.
از چند دهه گذشته که رایانهها امکان پیادهسازی الگوریتمهای محاسباتی را فراهم ساختهاند، در راستای شبیهسازی رفتار محاسباتی مغز انسان، کارهای پژوهشی بسیاری از سوی متخصصین علوم رایانه، مهندسین و همچنین ریاضیدانها شروع شده است، که نتایج کار آنها، در شاخهای از علم هوش مصنوعی و در زیرشاخه هوش محاسباتی تحت عنوان موضوع «شبکه های عصبی مصنوعی» یا Artificial Neural Networks (به اختصار: ANNs) طبقه بندی شده است. در مبحث شبکه های عصبی مصنوعی، مدل های ریاضی و نرمافزاری متعددی با الهام گرفتن از مغز انسان پیشنهاد شدهاند، که برای حل گستره وسیعی از مسائل علمی، مهندسی و کاربردی، در حوزه های مختلف کاربرد دارند.
کاربردهای شبکههای عصبی مصنوعی
امروز به قدری استفاده از سیستمهای هوشمند و به ویژه شبکه عصبی مصنوعی گسترده شده است که می توان این ابزارها را در ردیف عملیات پایه ریاضی و به عنوان ابزارهای عمومی و مشترک، طبقهبندی کرد. چرا که کمتر رشته دانشگاهی است که نیازی به تحلیل، تصمیمگیری، تخمین، پیشبینی، طراحی و ساخت داشته باشد و در آن از موضوع شبکههای عصبی استفاده نشده باشد. فهرستی که در ادامه آمده است، یک فهرست نه چندان کامل است. اما همین فهرست مختصر نیز گستردگی کاربردهای شبکههای عصبی مصنوعی را تا حدود زیادی به تصویر میکشد.
زمینه کلی | کاربرد |
علوم کامپیوتر |
|
علوم فنی و مهندسی |
|
علوم پایه و نجوم |
|
علوم پزشکی |
|
علوم تجربی و زیستی |
|
علوم اقتصادی و مالی |
|
علوم اجتماعی و روانشناسی |
|
هنر و ادبیات |
|
علوم نظامی |
|
انواع شبکههای عصبی مصنوعی
انواع مختلفی از مدلهای محاسباتی تحت عنوان کلی شبکههای عصبی مصنوعی معرفی شده اند که هر یک برای دستهای از کاربردها قابل استفاده هستند و در هر کدام از وجه مشخصی از قابلیتها و خصوصیات مغز انسان الهام گرفته شده است.
در همه این مدلها، یک ساختار ریاضی در نظر گرفته شده است که البته به صورت گرافیکی هم قابل نمایش دادن است و یک سری پارامترها و پیچ های تنظیم دارد. این ساختار کلی، توسط یک الگوریتم یادگیری یا تربیت (Training Algorithm) آن قدر تنظیم و بهینه میشود، که بتواند رفتار مناسبی را از خود نشان دهد.
نگاهی به فرایند یادگیری در مغز انسان نیز نشان میدهد که در واقع ما نیز در مغزمان فرایندی مشابه را تجربه میکنیم و همه مهارتها، دانستهها و خاطرات ما، در اثر تضعیف یا تقویت ارتباط میان سلولهای عصبی مغز شکل میگیرند. این تقویت و تضعیف در زبان ریاضی، خود را به صورت تنظیم یک پارامتر (موسوم به وزن یا Weight) مدلسازی و توصیف میکند.
اما طرز نگاه مدلهای مختلف شبکههای عصبی مصنوعی کاملا متفاوت است و هر یک، تنها بخشی از قابلیتهای یادگیری و تطبیق مغز انسان را هدف قرار داده و تقلید نمودهاند. در ادامه به مرور انواع مختلف شبکههای عصبی پرداختهایم که مطالعه آن در ایجاد یک آشنایی اولیه بسیار موثر خواهد بود.
پرسپترون چندلایه یا MLP
یکی از پایهایترین مدلهای عصبی موجود، مدل پرسپترون چند لایه یا Multi-Layer Perceptron (به اختصار MLP) است که عملکرد انتقالی مغز انسان را شبیهسازی میکند. در این نوع شبکه عصبی، بیشتر رفتار شبکهای مغز انسان و انتشار سیگنال در آن مد نظر بوده است و از این رو، گهگاه با نام شبکههای پیشخورد (Feedforward Networks) نیز خوانده میشوند. هر یک از سلولهای عصبی مغز انسان، موسوم به نورون (Neuron)، پس از دریافت ورودی (از یک سلول عصبی یا غیر عصبی دیگر)، پردازشی روی آن انجام میدهند و نتیجه را به یک سلول دیگر (عصبی یا غیر عصبی) انتقال میدهند. این رفتار تا حصول نتیجهای مشخص ادامه دارد، که احتمالاً در نهایت منجر به یک تصمیم، پردازش، تفکر و یا حرکت خواهد شد.
شبکه های عصبی شعاعی یا RBF
مشابه الگوی شبکه های عصبی MLP، نوع دیگری از شبکه های عصبی وجود دارند که در آنها، واحدهای پردازنده، از نظر پردازشی بر موقعیت خاصی متمرکز هستند. این تمرکز، از طریق توابع شعاعی یا Radial Basis Functions (به اختصار RBF) مدلسازی میشود. از نظر ساختار کلی، شبکههای عصبی RBF تفاوت چندانی با شبکههای MLP ندارند و صرفا نوع پردازشی که نورونها روی ورودهایشان انجام میدهند، متفاوت است. با این حال، شبکه های RBF غالبا دارای فرایند یادگیری و آمادهسازی سریعتری هستند. در واقع، به دلیل تمرکز نورونها بر محدوده عملکردی خاص، کار تنظیم آنها، راحتتر خواهد بود.
ماشینهای بردار پشتیبان یا SVM
در شبکه های عصبی MLP و RBF، غالبا توجه بر بهبود ساختار شبکه عصبی است، به نحوی که خطای تخمین و میزان اشتباههای شبکه عصبی کمینه شود. اما در نوع خاصی از شبکه عصبی، موسوم به ماشین بردار پشتیبان یا Support Vector Machine (به اختصار SVM)، صرفا بر روی کاهش ریسک عملیاتی مربوط به عدم عملکرد صحیح، تمرکز میشود. ساختار یک شبکه SVM، اشتراکات زیادی با شبکه عصبی MLP دارد و تفاوت اصلی آن عملاً در شیوه یادگیری است.
نگاشتهای خودسازمانده یا SOM
شبکه عصبی کوهونن (Kohonen) یا نگاشت خودسازمانده و یا Self-Organizing Map (به اختصار SOM) نوع خاصی از شبکه عصبی است که از نظر شیوه عملکرد، ساختار و کاربرد، کاملاً با انواع شبکه عصبی که پیش از این مورد بررسی قرار گرفتند، متفاوت است. ایده اصلی نگاشت خودسازمانده، از تقسیم عملکردی ناحیه قشری مغز، الهام گرفته شده است و کاربرد اصلی آن در حل مسائلی است که به مسائل «یادگیری غیر نظارت شده» معروف هستند. در واقع کارکرد اصلی یک SOM، در پیدا کردن شباهتها و دستههای مشابه در میان انبوهی از دادههایی است که در اختیار آن قرار گرفته است. این وضعیت مشابه کاری است که قشر مغز انسان انجام میدهد و انبوهی از ورودیهای حسی و حرکتی به مغز را در گروههای مشابهی طبقهبندی (یا بهتر است بگوییم خوشهبندی) کرده است.
یادگیرنده رقمیساز بردار یا LVQ
این نوع خاص شبکه عصبی، تعمیم ایده شبکه های عصبی SOM برای حل مسائل یادگیری نظارت شده است. از طرفی شبکه عصبی LVQ (یا Learning Vector Quantization)، می تواند به این صورت تعبیر شود که گویا شبکه عصبی MLP با یک رویکرد متفاوت، کاری را که باید انجام بدهد یاد میگیرد. اصلیترین کاربرد این نوع شبکه عصبی در حل مسائل طبقه بندی است که گستره وسیعی از کاربردهای سیستمهای هوشمند را پوشش میدهد.
شبکه عصبی هاپفیلد یا Hopfield
این نوع شبکه عصبی، بیشتر دارای ماهیتی شبیه به یک سیستم دینامیکی است که دو یا چند نقطه تعادل پایدار دارد. این سیستم با شروع از هر شرایط اولیه، نهایتا به یکی از نقاط تعادلش همگرا می@شود. همگرایی به هر نقطه تعادل، به عنوان تشخیصی است که شبکه عصبی آن را ایجاد کرده است و در واقع میتواند به عنوان یک رویکرد برای حل مسائل طبقهبندی استفاده شود. این سیستم، یکی از قدیمیترین انواع شبکههای عصبی است که دارای ساختار بازگشتی است و در ساختار آن فیدبکهای داخلی وجود دارند.
مراجع مطالعاتی و منابع آموزشی مهم
در این بخش، قصد داریم منابع آموزشی و مراجع مطالعاتی در زمینه شبکههای عصبی مصنوعی را معرفی کنیم. اگر شما نیز قصد دارید که در یک کار پژوهشی، پروژه دانشگاهی یا صنعتی و یا در مسیر علایق شخصیتان، شبکههای عصبی مصنوعی را فرا بگیرید و در خصوص نحوه پیادهسازی و کاربردهای این ابزارهای مفید اطلاعاتی را کسب نمایید، حتماً پیشنهاد میکنیم که در ادامه با ما همراه باشید.